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Power law temporal dependence of InGaAs/InP SPAD afterpulsing
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The characterization and analysis of afterpulsing behavior in InGaAs/InP single photon avalanche diodes
(SPADs) is reported for gating frequencies between 10 and 50MHz. Gating in this frequency range was
accomplished using a matched delay line technique to achieve parasitic transient cancellation, and FPGA-based
data acquisition firmware was implemented to provide an efficient, flexible multiple-gate sequencing
methodology for obtaining the dependence of afterpulse probability Pap on hold-off time Tho. We show that
the detrapping times extracted from the canonical exponential fitting of Pap(Tho) have no physical significance,
and we propose an alternative description of the measured data, which is accurately fit with the simple power law
behavior Pap/T��ho with �� 1.2� 0.2. We discuss the physical implications of this functional form, including
what it may indicate about trap defect distributions and other possible origins of this power law behavior.
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1. Introduction

There has been substantial progress in the past decade
in the performance and implementation of single
photon avalanche diodes (SPADs) based on the
InGaAsP material system for the detection of photons
in the wavelength range 0.9–1.7 mm [1,2]. The funda-
mental tradeoff between photon detection efficiency
(PDE) and dark count rate (DCR) has reached a level
of performance that is sufficient for many applications
(see, for example, [3]) with convenient and cost-
effective packaging employing thermoelectric cooling.
The timing accuracy of these detectors has also been
demonstrated to be highly precise, with timing jitter of
100 ps or less for typical operating conditions [1,4].
At present, the most problematic issue pertaining to
many applications for InP-based SPADs is the limita-
tion in counting rate posed by the phenomenon known
as afterpulsing.

A SPAD is operated by applying a bias voltage to
the device that exceeds its avalanche breakdown
voltage Vb. In this metastable state, a single photoex-
cited carrier entering the high-field multiplication
region of the device can generate an avalanche of
carriers by impact ionization. This mode of operation,
known as the Geiger mode, results in a macroscopic
pulse of charge that is easily detectable by appropriate
electronic threshold circuitry following the detector.
This process provides a simple, effective means for

detecting single photons. However, if charge carriers

created during the avalanche process become trapped

at atomic defect sites in the multiplication region, the

subsequent detrapping of these carriers at a later time

can trigger spurious additional avalanches known as

afterpulses. Afterpulses are a type of dark count, but

unlike other dark counts mechanisms – such as thermal

excitations or tunneling effects – that occur randomly

in time, afterpulses are strongly correlated to previous

avalanches during which trap sites were populated.

The most straightforward mitigation of afterpulsing

effects is to force the SPAD to be inactive by biasing it

below Vb for a ‘hold-off’ time that is sufficiently long

to allow all trapped carriers to be detrapped and swept

from the multiplication region without the possibility

of triggering afterpulses. However, imposing long

hold-off times limits the rate at which photons can be

detected.
During the past several years, the most prevalent

strategy employed to mitigate afterpulsing has been to

limit the amount of charge flow that occurs during

each avalanche. The rationale has been that smaller

avalanches with less charge flow lead to less carrier

trapping and consequently reduced afterpulsing. The

most successful implementation of this afterpulsing

reduction strategy has been the use of gated quenching

with very short (�100–200 ps) gate durations. Using

either sine-wave gating [5–7] or self-differencing
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techniques [8,9] to eliminate the transient effects

inherent in high-frequency gate modulation, this

approach has been used to achieve impressive

GHz-rate gated operation of InGaAs/InP SPADs.
However, these recent advances in afterpulse

reduction have been restricted to periodic gating with

very short gates with photon arrivals synchronized to

the gating frequency. More generally, it would be

highly desirable to have asynchronous, or ‘free-

running’, operation with very fast (ns-scale) quenching

and reset following each photon detection. Among

recent studies, there have been reports of free-running

behavior achieved using hybrid passive quenching with

low bias operation [10] and device structures incorpo-

rating monolithically integrated negative feedback to

provide avalanche self-quenching [11,12]. Nevertheless,

to date these implementations have been constrained to

rather modest values of PDE by the onset of after-

pulsing at higher bias. Beyond clever circuit

approaches such as the short-gating techniques, further

progress towards resolving afterpulsing limitations will

require a better understanding of the microscopic

origins of this phenomenon. The predominant device

design for InGaAsP-based SPADs used today [2,13,14]

employs an InP multiplication region, and very little is

known about the trap sites that might be responsible

for afterpulsing effects in these devices.
With the objective of improving our understanding

of the nature of the defects that give rise to afterpulsing

in InGaAs/InP SPADs, we have extended a gating

scheme based on matched delay line transient cancel-

lation to characterize the dependence of afterpulsing

probability Pap on hold-off time Tho at frequencies

between 10 and 50MHz. Additionally, we have imple-

mented field-programmable gate array (FPGA) con-

trol of this circuitry to generalize the standard time-

correlated carrier counting [15] (or ‘double-pulse’)

method for afterpulse measurements. We show that

the canonical approach to fitting such measured data –

in which it is assumed that one or just a few defects

with exponential carrier detrapping dictate the after-

pulsing behavior – does not yield physically meaningful

results for detrapping time constants. Instead, we show

that our data, as well as similar afterpulsing data

obtained by other groups, is accurately described by a

power law Pap/T��ho with �� 1.2� 0.2. We then

propose a simple model for calculating the dependence

Pap(Tho) based on the assumption of a defect popula-

tion with a distribution of detrapping rates, and we

show that the experimental observed power law

behavior is consistent only with specific types of

defect distributions. Finally, we discuss other possible

explanations for the observed power law dependence

of Pap on Tho.

2. 50MHz gating with FPGA-based data acquisition

2.1. Matched delay line transient cancellation

To perform the measurements described in this paper,
we have adopted a short-gate technique first developed
by Bethune and Risk [16,17] in which two matched
coaxial delay lines – one inverting and the other non-
inverting – are used to cancel the parasitic transient
responses resulting from the rapid swing in bias voltage
across the capacitance of the SPAD at the beginning
and end of the gate period. The SPAD bias control
circuitry applies periodic excess bias gates consisting of
a fixed voltage swing DV� 4V with rise and fall times
of �0.1 ns and a gate plateau ranging from �0.5 to
5 ns. The voltage swing DV is added to a dc bias level
Vdc5Vb, and the excess bias Vex is set by adjusting the
dc bias level so that Vex¼VdcþDV�Vb. Earlier
implementations of this scheme [16,18] were limited
to �5MHz due to sizable avalanche pulses giving rise
to excessive afterpulsing at frequencies above this
range. Through the implementation of shorter delay
lines, more precise design of the hybrid circuitry used
for transient cancellation, and the reduction of other
circuit parasitics, we have achieved good performance
for gating frequencies up to 50 MHz, with afterpulsing
of �2–3% for 10% PDE using 1 ns duration gates [2].

2.2. Multiple-gate sequencing as extension of
time-correlated carrier counting

The most widely used technique for characterizing
SPAD afterpulsing effects is the time-correlated carrier
counting method [15], also referred to as the ‘double-
pulse’ method. The basic scheme is to apply a first
gating pulse at time T1 to arm the SPAD and induce an
avalanche during this gate by illuminating the SPAD
with a coincident optical pulse. A second gating pulse
is then applied after a hold-off time Tho at a later time
T2¼T1þTho without illumination to observe if a
count occurs at T2. Sufficient repetitions of this
double-pulse sequence provide a statistical measure
of the increase in the count rate at T2 above the
intrinsic DCR due to afterpulses correlated to the
earlier avalanches occurring at T1. This increase in
DCR at T2 is a quantitative measure of the afterpulsing
probability Pap, and by systematically varying Tho, one
obtains the relation Pap(Tho).

The double-pulse method is effective for character-
izing the dependence of the afterpulse probability Pap

on hold-off time Tho, but it is time-consuming to step
through successive values of Tho, and it does not
measure higher order effects related to afterpulses
initiated by previous afterpulses. Using FPGA-based
firmware, we have generalized the double-pulse
method to implement a more flexible scheme in
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which each illuminated gate at T1 is followed by an
arbitrary number of additional gates at multiples of the
minimum time separation DT between gates – i.e.
Tn¼T1þ nDT. We illustrate this gating scheme in
Figure 1 with n¼ 128 for two gating frequencies of 50
MHz (DT¼ 20 ns) and 25MHz (DT¼ 40 ns).

Using the FPGA-controlled multiple-gate sequenc-
ing with the improved matched delay line transient
cancellation circuitry, we measured the afterpulse
probability Pap per 1-ns gate as a function of hold-
off time Tho, as shown for four different gating
frequencies in Figure 2. For each gating frequency fg,
points are obtained at timing intervals DT¼ 1/fg.
Unlike the legacy double-pulse method, these data
can include higher order afterpulsing effects in which
one afterpulse induces a later afterpulse. The higher
order effects can also be eliminated from the data set
by considering only the earliest count among the Tn

gates in each multiple-gate sequence and ignoring
counts at later gates. For this particular data set, since
the maximum values of Pap are only �1% even for the
shortest hold-off time used (i.e. 20 ns for the 50MHz
gating in Figure 2(d)), higher order effects will have a
probability of �1� 10�4 and can be neglected when
considering afterpulsing probabilities on a per-gate
basis. However, we do find a measurable dependence
on gating frequency of the background DCR using the
multiple-gate sequencing technique described above.
Specifically, for 10 and 50MHz operation, the mea-
sured DCR is 1.7� 10�6 and 2.6� 10�6 per 1-ns gate,
respectively. Data obtained at 25MHz and 40MHz
(not shown in Figure 2) accurately interpolate between
the 10 and 50MHz values; only the 33MHz DCR
value falls outside this trend, being somewhat lower
than expected. These results suggest that higher after-
pulsing at higher frequencies is increasing the apparent
background DCR value by about 35% for an increase

in frequency from 10MHz to 50MHz using this new
technique.

The data in Figure 2 also show some variation with
gating frequency in the temporal decay of the after-
pulsing probability to the measured background DCR
value. Using the fitting behavior described below in
Section 3.2 to extrapolate the data in this figure, these
decay times to reach the background DCR for the
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Figure 2. Measured results for afterpulse probability per 1 ns
gate as a function of the hold-off time following a photon-
induced primary avalanche with PDE¼ 20%. (a)–(d) corre-
spond to gating frequencies of 10, 25, 33, and 50MHz,
respectively, implemented using FPGA firmware to establish
the multiple-gate sequencing illustrated by Figure 1. Dashed
lines indicate the background DCR measured at each
frequency. All data were obtained at 223K. (The color
version of this figure is included in the online version of the
journal.)

~1 ns gates

1 2 3 4 5 6 126 127 128 1 2

50 MHz:
20 ns

25 MHz:

1 2 3 128 1

40 ns

Figure 1. Illustrative examples of high frequency gating
sequences implemented using firmware in field programma-
ble gate arrays (FPGAs). Photon arrivals are synchronized
with the first gate (labeled ‘1’) in a programmable sequence
of gates, and in this example, counts can be recorded in all of
the gates 2–128 following photon detection at gate 1. (The
color version of this figure is included in the online version of
the journal.)
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10MHz and 50MHz gating frequencies are estimated
to be �80 ms and �300 ms, respectively. As with the
slight increase in background DCR for higher fre-
quency operation, we believe that higher order after-
pulsing effects are responsible for the slower decay to
the background DCR value for higher gating frequen-
cies. It is also worth noting that these decay times are
rather long because the background DCR values are
so low.

3. Functional analysis of afterpulsing data

3.1. Fitting based on legacy assumption of a few
dominant traps

The Pap(Tho) obtained for the different frequencies
(as in Figure 2) all follow the same functional form,
as can be seen by plotting the measured data for all
frequencies on the same graph. In Figure 3, the
symbols correspond to the measured data for frequen-
cies of 10, 25, 33, 40, and 50MHz.

Essentially, all attempts to model the behavior of
Pap(Tho) in previous literature on SPADs start with the
basic assumption that the defect traps which lead to
afterpulsing are characterized by an exponential
detrapping time �. In the simplest case for which
there is just one dominant type of trap in the
SPAD multiplication region, the afterpulsing proba-
bility would be characterized by Pap(Tho)¼A0þ

A1exp(�Tho/�), where A0 and A1 are constants. If a
sufficiently narrow range of hold-off times is used, then

a reasonable fit can be obtained using this single-
exponential functional form. For instance, this analysis
was applied in [19] to afterpulsing measurements with
hold-off times in the range of 1 to 10 ms, for which
�� 0.9 ms provided a best fit.

However, for all data sets obtained using wider
ranges of hold-off time, the single-exponential form
does not provide a good fit. It has then been common
practice to assume that additional traps with different
time constants are also present, and analysis proceeds
with a generalized form

Pap tð Þ ¼A0þA1e
�Tho=�1 þA2e

�Tho=�2 þA3e
�Tho=�3 þ� � � ,

ð1Þ

where A0 is the background dark count rate, and Ai

and �i are the exponential pre-factor and detrapping
time constant, respectively, associated with the ith trap
type. In [20], such a procedure was used to fit
afterpulsing data with hold-off times ranging from
1.25 to 100 ms by using three time constants
(�1� 0.5ms, �2� 6.1 ms, and �3� 99 ms). Similarly, in
[21], hold-off times ranging from 0.02 to 50 ms were
used, and fitting of the resulting afterpulsing data
required four detrapping time constants (�1� 0.07 ms,
�2� 0.9 ms, �3� 4.2 ms, and �4� 33 ms). For the mea-
sured Pap(Tho) data in Figure 3 spanning hold-off
times ranges from 20 ns to 1.5 ms, we can follow a
similar procedure to obtain the fit shown by the heavy
dashed line. Obtaining a good fit over this range of
hold-off times requires the use of three exponential
terms indicated by light dashed curves, and the
corresponding time constants �1� 30 ns, �2� 120 ns,
and �3� 600 ns are indicated in the figure.

We now contend that in all of these cases, this
exercise in fitting measured afterpulsing data with the
minimum of exponentials required to obtain a good fit
is entirely arbitrary and that the extracted detrapping
time constants have no physical significance.
Throughout essentially all of the literature in which
this procedure is employed, each additional factor of
�5 to 10 in experimental hold-off times used to make
the measurements requires the addition of another
exponential term, yielding another time constant which
supposedly indicates the prevalence of another trap
type. However, it is evident from this whole fitting
procedure that the extracted values for the detrapping
times depend entirely on the range of hold-off times used
in the data set. To emphasize this point, we repeat the
exponential fitting process illustrated in Figure 4 for a
subset of the data spanning the somewhat narrower
hold-off time range of 60 ns to 900 ns. Fitting this
subset of the same exact experimental data, the
simplest form of Equation (1) to provide a good fit
requires just two exponentials with time constants of
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Figure 3. Symbols indicate measured afterpulse probability
per 1 ns gate as a function of the hold-off time following a
photon-induced primary avalanche for five different frequen-
cies, as in Figure 2. Light dashed curves indicate piece-wise
exponential fits (with indicated detrapping times �n), and the
heavy dashed curve indicates the resulting fit given by the
sum of the light dashed curve fits. (The color version of this
figure is included in the online version of the journal.)

Journal of Modern Optics 1475



�1� 70 ns and �2� 500 ns. Clearly, these results bear no
relationship to the values obtained earlier in Figure 3,
and in neither case do the values obtained for �n have
physical significance.

3.2. Fitting based on power law behavior

Although the exponential fitting procedure described
above is motivated by reasonable physical expectations
– i.e. the dominance of a small number of defect trap
types – its arbitrary nature makes it impossible to
ascribe physical significance to its output. We are then
confronted with the question of whether an alternate
fitting procedure can be found that is less arbitrary and
perhaps provides more meaningful clues to the under-
lying physical origin of the afterpulsing behavior.

In Figure 5, we present the same experimental data
plotted in Figure 4 and show that these data are
described quite accurately over two orders of magni-
tude of Tho by a simple power law (dashed line) of the
form Pap ¼ CT��ho where C and � are constants. The
best fit to this data set is provided by �� 1.07.

It is natural to then ask whether other afterpulsing
data reported in the literature exhibits the same
functional form. In Figure 6, we show measured data
(symbols) originally reported by Restelli and Bienfang
[22] at NIST in Gaithersburg, as well as results
obtained by the group at the University of Virginia
[23]. Over at least two orders of magnitude in hold-off
time, a simple power law dependence (dashed lines)
provides a very accurate fit to both sets of data, with

respective exponent values of �� 1.21 and �� 1.09.
Data shown in this figure were acquired with 1 ns
gating, but measurements incorporating a range of
different gate widths (from 0.5 to 3 ns) yield similar
values of � with a variation of no more than� 0.06
relative to the 1 ns gating values. We also performed a
similar analysis of afterpulsing data obtained from
Namekata and Inoue [24] at Nihon University, and
again, the data exhibited power law behavior, although
with a somewhat larger exponent of �� 1.38. Based
on this analysis of Pap(Tho) data obtained from
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Figure 6. Measured afterpulsing dependence on hold-off
time from NIST [19] and Univ. of Virginia [20] showing
similar power law behavior to that of Figure 5. Both sets of
data were taken using the double-pulse method with 1 ns
gates. Operating temperatures for NIST and UVA data were
253K and 230K, respectively. (The color version of this
figure is included in the online version of the journal.)
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InP/InGaAs SPADs by four different research groups,
it appears that the afterpulsing dependence on hold-off
time is well described by a power law behavior
Pap � T��ho with �� 1.2� 0.2.

The power law dependence of Pap on Tho is
immediately evident from the simple straight-line plot
obtained when the data is graphically represented in a
log–log format. It is interesting to note that much of the
earlier data for Pap(Tho) reported in the SPAD litera-
ture has been plotted in a log–linear format, and so the
power law functional form was not readily apparent.

4. Possible physical significance of afterpulsing

power law behavior

Given the demonstrated power law behavior of the
afterpulsing dependence on hold-off time, it is natural
to ask whether this behavior provides detailed infor-
mation concerning the nature of the defects giving rise
to afterpulsing. The literature on deep level traps in
InP (e.g. the survey by Anderson and Jiao [25]) shows
that a rather dense spectrum of trap levels has been
identified. These results suggest that instead of assum-
ing just a few dominant trap levels, it may be more
physically meaningful to develop a model that incor-
porates exponential detrapping from a broad distribu-
tion of trap levels.

We first define the inverse of the detrapping time
constant � to be the detrapping rate R� 1/� and then
consider that the afterpulse probability is directly
related to the temporal change in trap occupation N
given by dN/dt�Rexp(�ThoR). Next, we assume that
a broad spectrum of trap levels results in a distribution
of detrapping rates D(R). To obtain the afterpulse
probability, it is then necessary to integrate over this
detrapping rate distribution, so that

Pap �

ð�min

�max

dRD Rð ÞRe�ThoR: ð2Þ

To establish consistency with experimental mea-
surement conditions, we choose the integration limits
�min¼ 10 ns and �max¼ 10 ms. However, different
choices for these limits result in only modest quanti-
tative differences in the model output.

Our strategy is to apply the model to obtain
Pap(Tho) using different assumptions for the form of
the detrapping rate distribution D(R) to determine
whether there are specific forms of D(R) that yield the
power law behavior found experimentally. The sim-
plest case is that of a single trap type which is described
by a delta function distribution D(R)¼ �(R�R0),
where the single detrapping time �0¼ 1/R0. This leads
to an exponential dependence of Pap on Tho, and we
have already determined that a simple exponential fit

does not accurately describe experimental data. The

case of a Gaussian distribution of detrapping rates can
be viewed as a broadened delta function, and using the

model, we find a similar exponential dependence

for Pap(Tho) which again does not match the

measured data.
We obtain a more interesting result if we assume a

uniform distribution of detrapping rates D(R)¼C for

some constant C; physically, this corresponds to a

collection of traps in which the number of traps with
any given value of detrapping rate is always the same.

After integrating over the range of hold-off times from

10 ns to 10 ms, the model provides the Pap(Tho) depen-
dence shown in Figure 7 by the lower solid line labeled

‘uniform’. The dashed line power law fit to the model

output shows that the uniform distribution does
provide the power law behavior Pap � T��ho but with

�� 2.0, which is significantly different from the values

�� 1.2� 0.2 that we have obtained from fitting the

experimental data.
Among all the other distributions we have consid-

ered, the only distribution for which the model in

Equation (2) provides results that are consistent with

our experimental results is an ‘inverse’ distribution
given by D(R)/ 1/R. The model output for this

distribution is plotted as the upper solid line in

Figure 7 labeled ‘inverse’, and the dashed line fit
shows that it is accurately described by a power law

Pap � T��ho with �� 1.18, in good agreement with our

experimentally determined power law behavior of

�� 1.2� 0.2.
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Figure 7. Solid curves indicate model results for normalized
afterpulsing probability per unit time as a function of hold-
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version of the journal.)
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5. Discussion concerning model results and power law

behavior

5.1. Potential insights from distribution modeling

Our modeling approach based on the assumption of a
distribution of detrapping rates D(R) is consistent with
materials characterization results establishing a spec-
trum of trap levels in InP [25]. It is relevant to note that
while ‘narrow’ distributions such as the delta function
and Gaussian distributions yield exponential behavior
for Pap(Tho), the wider distributions such as the
uniform and inverse distributions exhibit power law
behavior. This is natural given mathematical relation-
ships by which integrations over a range of exponential
functions can give power law functions. The fairly
consistent value �� 1.2 of the exponent of the power
law found experimentally by us and a number of other
groups provides a means for constraining the number
of physically plausible trap distributions. In particular,
the agreement of the measured data with the model
results for the inverse distribution D(R)/ 1/R suggests
that there is a higher density of traps with a slower
release rate.

It is also important to point out, however, that we
have no basis for identifying the inverse distribution as
a unique solution for obtaining the power law behavior
with �� 1.2. There may be a more analytical approach
that can provide a class of distributions which have this
general property. It does seem likely that the general
shape of distributions which exhibit this behavior will
lie between ‘narrow’ distributions (e.g. delta function
and Gaussian), which exhibit exponential behavior,
and ‘wider’ distributions (e.g. uniform), which exhibit a
power law dependence but with larger exponents than
those found experimentally.

5.2. Alternate explanations for power law behavior

Notwithstanding the plausibility that a broad distri-
bution of trap levels exists in the InP multiplication
region, there may be other physical mechanisms that
establish a distribution of detrapping rates. For
instance, it has been pointed out that since afterpulsing
occurs in the presence of very high electric fields
(�5� 105V/cm), Poole–Frenkel effects can signifi-
cantly change the detrapping behavior at multiplica-
tion region defects by enhancing the carrier emission
probability [26]. Non-uniformity in the electric field
amplitude across the multiplication region would
induce a consequent variation in detrapping rates,
and the resulting distribution could lead to the
power law dependence of Pap(Tho) described in our
discussion above.

It is also possible that there are other explanations
for non-exponential temporal behavior in

detrapping processes. Jonscher proposed a model [27]
for the dynamics of deep level detrapping in the space
charge regions of p–n junctions that invoked a dipole-
like response leading to the prediction of power law
behavior in detrapping effects. He points out that the
observed functional form for the dielectric response of
detrapping could have a number of causes such as
many-body interactions, ‘screened hopping’ processes,
or correlations between detrapping transitions. These
speculations are qualitative, and they unfortunately do
not provide information on the distributions of traps.
But this earlier study makes clear that more complex
‘correlated’ detrapping mechanisms that deviate from
the usual assumption of non-interacting independent
traps can lead to power law behavior in the temporal
behavior of detrapping.

Finally, we have also analyzed afterpulsing mea-
surements obtained for Si SPADs [28], and these
results seem to be qualitatively different from the
results found for InGaAs/InP SPADs. For afterpulsing
data taken over two orders of magnitude in hold-off
time, the behavior of Pap(Tho) for Si SPADs falls
between power law and exponential. It is possible that
the distribution of detrapping rates in Si multiplication
regions is considerably narrower than in InP regions
due to a narrower spectrum of trap levels. The
implication of this result – that the nature of defects
in Si SPADs may be categorically different than for
InP-based devices – is certainly plausible given the
greater maturity of the Si materials system.

6. Conclusions

To carry out this study of the dependence of after-
pulsing in InP/InGaAs SPADs on hold-off time, we
increased the gating repetition rate of a matched delay
line scheme for transient cancellation to 50MHz.
Additional improvements have already been made to
achieve 100MHz gating with this technique, and we
believe further significant increases in photon counting
rate are feasible with the matched delay line approach.
To provide efficiency and flexibility to this measure-
ment system, we have implemented FPGA-controlled
electronics to count afterpulses for an arbitrary
number of sequential gates following a photon-induced
avalanche. This multiple-gate sequencing serves as a
generalization of the traditional double-pulse method
for characterizing the dependence of the afterpulsing
probability on hold-off time. Moreover, similar
FPGA-based circuitry will provide greatly enhanced
capabilities for future photon counting instrumenta-
tion. In this present study, the multiple-gate sequencing
approach proved to be noisier than well-implemented
double-pulse measurements, but we hope to make
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future improvements to enable the acquisition of

comparably lower noise data. Additionally, although

FPGA-based electronics provide substantial flexibility

for gating bias control, our use of the matched delay

line scheme for achieving higher frequency gating of

50MHz does restrict us to rather short gate durations

on the scale of a few nanoseconds.
Using our measured data for Pap(Tho), we have

shown that the legacy analysis consisting of fitting the

data with a series of exponentials to extract detrapping

times supposedly associated with a few specific trap

levels has no physical significance. The detrapping

times extracted by this analysis are arbitrary and

depend entirely on the range of hold-off times used in

the measurements.
We instead show that Pap(Tho) can be quite

accurately fit with a simple power law Pap ¼ CT��ho .

To assess the generality of this result, we have analyzed

afterpulsing data on InP/InGaAs SPADs obtained by

a number of other groups, and we find that the power

law description of these data is very consistent, with an

exponent of �� 1.2� 0.2.
In considering that the literature on InP indicates

a broad spectrum of trap levels in this material, we

developed an afterpulsing model that assumes a

distribution of detrapping rates D(R). We found

that for appropriate choices of the detrapping rate

distribution, Pap(Tho) exhibits power law behavior for

at least three orders of magnitude in hold-off time. Of

all the distributions used in evaluating the model, the

only one that provided good quantitative agreement

with the measured data is an ‘inverse’ distribution

corresponding to D(R)/ 1/R. It is very possible that

this distribution is not unique in providing good

agreement with experimental results, but it establishes

a general description of the trap population assuming

that this afterpulsing model is correct. We also point

out that other physical mechanisms could give rise to

a distribution of detrapping rates, such as a variation

in electric field amplitude in the multiplication region.

Finally, there are other possible explanations for the

observed power law behavior of Pap(Tho) if more

complex ‘correlated’ detrapping mechanisms were to

exist in the InP multiplication regions of these

SPADs.
Further work with the afterpulsing model

described in this paper is necessary to determine

what additional predictions it may yield for experi-

mental verification. Future efforts towards this end

will be necessary to provide more evidence that the

assumption of a distribution of traps is in fact a

realistic explanation for the measured power law

temporal dependence of afterpulsing in InP/InGaAs

SPADs.
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